
School of Computer Science

College of Engineering and
Computer Science

COMP3006 - Computer Science Research Project

Bluetooth Sniffing and the PS3

Author:

Luke Vincent

Supervisor:

Eric McCreath

November 1, 2010

Abstract

Bluetooth is a widely deployed networking protocol providing efficient and

secure communication for low power-devices. The Sony PlayStation 3TM is

a 7th generation gaming conle designed to be controlled wirelessly via Blue-

tooth controllers. This report first outlines an investigation into the plausi-

bility of sniffing Bluetooth communication of consumer devices. Building on

this is an investigation into the implementation of Dominic Spill and Andrea

Bittau’s research on discovering unknown Bluetooth MAC addresses. Lastly

using various penetration techniques I reverse-engineer some of the Bluetooth

communication of the Playstation controllers, providing a foundation for an

open-source emulation of the controller - the first time this has been achieved

in this manner.

Declaration

Except where otherwise indicated, this thesis is my own original work.

Acknowledgements

I acknowledge the help and the guidance of my project supervisor Eric

McCreath. Without his sunny disposition on a Monday afternoon this

would have been a much more difficult endeavour!

1

Contents

1 Introduction 4

1.1 The Problem . 4

1.2 Overview . 5

1.3 Contribution . 6

1.4 Limitations . 6

2 Theory 8

2.1 Bluetooth Security . 9

2.1.1 Data Whitening . 9

2.1.2 Bluetooth Pairing . 9

3 Implementation 12

3.1 Setting up the Bluetooth Adapter 12

3.2 Initial Sniffing - Mobile Phone 14

3.2.1 Key Generation . 14

4 Finding the MAC Address 17

4.1 Data Whitening . 17

4.1.1 LAP . 18

4.1.2 UAP . 19

4.1.3 NAP . 19

2

4.1.4 Final Algorithm . 20

5 Reverse Engineering the PS3 Controller Protocol 21

5.1 Sniffing the PS3 Connection 21

5.1.1 USB Sniffing . 21

5.1.2 PS3 USB Connection 22

5.1.3 PS3 Bluetooth Sniffing 24

5.1.4 PS3 Proxy . 25

6 Results 27

6.1 Deconstructing the Packet Data 27

7 Discussion 31

8 Conclusion 33

3

Chapter 1

Introduction

The Comp3006 research project is the opportunity for a student to investi-

gate any one aspect of computer science. The original plan for this project

was to develop an application for the Android phone to act as a controller for

the PlayStation 3 (PS3). However after analysis of the Android development

platform, it became apparent that creating a simple Bluetooth application

was trivial and the main difficulty lay in the reverse engineering of the PS3

Bluetooth communication. Therefore I chose to analyse the Bluetooth com-

munication model and the feasibility of sniffing secure Bluetooth traffic.

1.1 The Problem

Bluetooth has been designed to be far more secure than any of the initial Wifi

communication specifications. Wifi devices were easily changed to promis-

cuous mode[1] - the mode in which the network card passes all traffic to the

CPU, rather than just the packets addressed to the device. As a result, Wifi

and its securities were more easily cracked as deep packet analysis on all

traffic was available.

Therefore the problem analysed in this report is to determine if Bluetooth

can be easily sniffed from a consumer perspective; even when set up in secu-

4

rity mode 3 - link-layer PIN authentification and MAC address encryption[2].

Bluetooth devices all lack a promiscuous mode and hence the ability to scan

all traffic has made the simple interception of packets a lot harder; gener-

ally a Bluetooth radio can only receive packets which are directed at them.

The second problem confronted in this report is the reverse engineering of

the Bluetooth communication between the PS3 and its controllers and the

feasibility of developing a software communicator.

1.2 Overview

Chapter 1 presents an outline of the report’s focus, problem and contribution.

Chapter 2 contains the background of the project - providing an outline

of Bluetooth and its various securities. It also provides a background on how

this links to the Sony PlayStation 3.

In Chapter 3 the process of Bluetooth Sniffing is examined on an ideal

test case - where both MAC addresses are known and the devices are in

discoverable mode. The assorted tools needed to perform this task and break

the encryption are investigated, such as the process of creating a Bluetooth

sniffer and discovering the pairing process.

Chapter 4 utilises Spill and Bittau’s work[3] on sniffing to determine an

unknown MAC address of a device in undiscoverable mode. In doing so,

this chapter analyses how the MAC address is encrypted into the packets of

already paired devices.

In Chapter 5, a variety of ways (from Bluetooth Sniffing to analysis of the

USB communication) are attempted to reverse-engineer the PS3 controller

communication. This Chapter also illustrates the implementation of a PS3

input proxy - essentially a man-in-the-middle attack on the communication.

5

Chapter 6 provides the results of the analysis of the communication pack-

ets between controller and PS3.

Chapter 7 discusses the plausibility of furthering this research into a viable

software controller and different avenues to explore in future projects.

1.3 Contribution

• Illustrate how consumer level Bluetooth devices can be transformed

into Bluetooth sniffers.

• Demonstrate a basic Bluetooth attack on the pairing process of two

Bluetooth phones.

• Use Spill and Bittau’s[3] work to decipher the MAC address of a phone

in undiscoverable mode.

• Utilise a combination of Bluetooth and USB sniffing to discover the

Bluetooth MAC address of both the PS3 and PS3 controller.

• Set up an input proxy between the PS3 and its controller as a man-in-

the-middle attack and passively record all communication packets.

• Provide an examination of these packets and the relationship between

the bytes and button presses.

1.4 Limitations

There were several limitations in this project; most notably the lack of infor-

mation regarding Bluetooth Sniffing and the lack of knowledge regarding the

PS3 controller and its method of communication. Subsequently, this forced

many hours of research into seemingly basic ideas (such as interfacing).

6

As the Sony PlayStation 3 is a closed system communicating only with

official hardware, debugging was extremely difficult with no error messages -

any problem in the communication could be numerous things ranging from an

issue with the Bluetooth sniffer, to incorrect parameters to the PS3 rejecting

all packets silently as they were incorrectly formed.

The only hardware limitation for this project was that of a dedicated

USB sniffer. With an external USB sniffer, it would be possible to sniff the

communication between controller and PS3 when connected via USB and

perhaps it would be possible to reverse-engineer the USB control messages

required to pair the device with the PS3.

7

Chapter 2

Theory

Bluetooth

Bluetooth is a specification for low-power radio communications for short

distances, operating in the license-free ISM (industrial, scientific and medical)

band at 2.4GHz[4]. As this is a very crowded communication frequency, the

Bluetooth protocol uses a radio technology called Frequency-Hopping Spread

Spectrum (FHSS)[5] to avoid interference. FHSS is a method of transmitting

radio signals by rapidly switching the device among the 79 frequency channels

using a pseudorandom sequence dependant on the MAC address of the master

device. Bluetooth changes between the 1MHz wide channels up to 1600

times per second, making Bluetooth sniffing (the act of intercepting the data

transmission) extremely difficult.

When a device connects to the Bluetooth piconet (a network consisting of

all devices sharing the same Bluetooth FHSS hopping sequence and timing),

the device must first synchronize to the network. The hopping sequence is

established by the address of the master device and the phase of the hopping

sequence determined by the internal clock of the master device. Hence to

communicate in the Bluetooth network the device must synchronise to these

8

values.

In a normal Bluetooth connection handshake, the slave receives one packet

(the FHS synchronisation packet) containing the master’s MAC address and

clock. Packet exchange is based on the basic clock, which ticks at 312.5us

intervals. A slot is defined as two ticks and in the case of single-slot pack-

ets (packets can be 1,3,5 slots long) the master transmits in even slots and

receives in odd slots. The slave works conversely. At any single time the

master communicates with one device at a time.[3]

2.1 Bluetooth Security

2.1.1 Data Whitening

All Bluetooth packets are ‘whitened’ (the act of scrambling the header and

payload) before transmission. This is done in order to reduce highly redun-

dant data, minimise DC bias and act as a security measure. The data is

scrambled by a data whitening word and then unscrambled using the same

word at the reciever[6]. In the case of Bluetooth the word used to whiten

is the lower six bits of the clock, which is known only to the devices in the

communication.

2.1.2 Bluetooth Pairing

Bluetooth pairing is used to control which devices can connect to a given

Bluetooth device. This acts as a security mechanism, reducing the exposure

of private data or unwanted control of the device. Hence two devices must

be paired to communicate with each other.

The pairing process involves creating a shared secret known as the link

9

key. Once this link key is created and known to both devices, the two devices

are effectively paired. Once paired, the device can authenticate the other

device’s identity using this link key. Also once this link key is created, the

devices can change to encrypted communication again using this link key.

Hence if the link key and master MAC address are determined by an

attacker, it can masquerade as the other device (by using MAC address

spoofing) and also eavesdrop on all communication between the two genuine

devices.[7]

Bluetooth Profiles

A Bluetooth profile specifies the general behaviours and possible applications

that Bluetooth devices may use in the course of their communication. There

are currently over 20 different profiles. A device must be compatible with the

subset of Bluetooth profiles necessary to use the desired services. Depending

on the profile, the devices use the Bluetooth technology in many different

ways. Each profile may contain the following:

• dependencies on other formats

• suggested user interface formats

• specific parts of the Bluetooth protocol stack.

The most important part of the specification is the definition of the protocol

stack. The profile specifies options and parameters at each layer of the stack.

The profile of greatest significance for the PlayStation 3 is the Human

Interface Device Profile (HID) which provides support for devices such as joy-

sticks and controllers. As such, it is specially designed to provide low latency

communications with low power requirements. It is also a reimplementation

10

of the USB HID provide which enables operating systems to re-use existing

code designed for these devices.

The PlayStation 3

The PlayStation 3 is a 7th generation console from the Sony Corporation.

The wireless controller (named SIXAXIS) has two analog sticks, an ac-

celerometer, 2 analog triggers, 8 pressure sensitive buttons, pressure sensitive

d-pad and 3 digital buttons. It contains an internal 3.7V Li-ion battery, which

provides up to 30 hours of gaming on a full charge. The controller connects

via USB or Bluetooth to the PS3, however the Bluetooth lacks a discovery

mode vital to allowing other Bluetooth devices to connect to it.

This leads to the most important piece of information - the controller

must pair via USB first to communicate with the PS3. This pairing process

writes the PS3’s Bluetooth address to memory on the controller, and it also

adds the controller to the PS3’s allowed devices list. Without this pairing

process the PS3 ignores all communication from the controller.

11

Chapter 3

Implementation

Bluetooth sniffing is the act of observing the traffic between two Bluetooth

devices transparently. Unfortunately, it is difficult to do - without the address

of the master device, interception of all of the information is basically not

feasible once pairing is complete. This is due to frequency hopping and data

whitening which is based off this master address. Therefore this address,

along with the link key are required to be able to extract any meaningful

data.

3.1 Setting up the Bluetooth Adapter

Moser’s paper ‘Busting the Bluetooth Myth - Getting RAW access’[8] ex-

plains a method for turning certain ordinary Bluetooth dongles into a sniffer

by flashing it with the firmware of a commercial sniffer.

All Bluetooth dongles with a Cambridge Silicon Radio chipset and exter-

nal flash memory can be used. To backup the firmware for safety, DFUtool

is used:

dfutool -d hci0 archive firmware-backup.dfu

12

and flash the Frontline sniffer firmware:

dfutool -d hci0 upgrade airsnifferdev46bc2.dfu

To make sure the Frontline tool recognises the device, the product ID and

vendor ID must be changed to 0x0002 and 0x0a12 respectively. This is done

with the open source tool, bccmd:

// Find the current Product ID

./bccmd psget -s 0x0000 0x02bf

// Set the Product ID

./bccmd psset -s 0x0000 0x02bf 0x0002

// Display the Current Vendor ID

./bccmd psget -s 0x0000 0x02be

// Set the Vendor ID

./bccmd psset -s 0x0000 0x02be 0x0a12

Once the device is running in raw mode it can begin the task of sniffing

all packets in the vicinity regardless of their device destination. The dongle

is then tested with various Bluetooth devices to make sure it is working

correctly.

The legalities of this approach are a grey area - the Frontline firmware

was previously released freely as it was believed only to be of use to the

official Frontline Comprobe sniffers[9]. However after Moser’s discovery, the

firmware is no longer allowed to be downloaded (and protection built in to

‘brick’ any non-official device). For the purposes of this research I use an old

version of the firmware and only in a pure research behaviour.

13

3.2 Initial Sniffing - Mobile Phone

To demonstrate a very basic attack I decided to the initial sniffing problem

was to discover the PIN of two known MAC address devices. This turned out

to be highly successful. The typical attack scenario on a pair of Bluetooth

devices is as follows.

Once the BD ADDR of one device is determined (methods for this are

explored in Chapter 4) the attacker then forges the MAC address to imitate

one of the devices. The sniffer then asks to pair, indicating it has no link key

/ PIN if it was already paired. The master (depending on its implementation

of the Bluetooth) will forget the old pairing data and request a new link key

from the genuine slave. The Bluetooth sniffer now captures the key-pairing

exchange taking place.

3.2.1 Key Generation

Once the pairing process is sniffed, the packets are exported and searched

for the following data which determines the encryption link-key:

LMP IN RAND

LMP COMB KEY (Master)

LMP COMB KEY (Slave)

LMP AU RAND (Master)

LMP AU RAND (Slave)

LMP SRES (Master)

LMP SRES (Slave)

From these values (which are freely passed across the air) the link key

can be recreated by brute force. Once the link key is discovered it is trivial

to spoof our identity to the master or slave device.

14

Figure 3.1: The Frontline Tool illustrating frame 1 of the S8003 phone

Example 1: Devices are HTC Magic Android and S8003 Samsung Dia-

mond. These two devices were initially paired with an unknown PIN code.

Firstly, their MAC address must be ascertained - which is trivially done by

a device scan when the victim devices are in discovery mode (Figure 3.1).

The pairing process is initiated and the connection and pairing is sniffed

as follows:

// Set the Device

csr_sniffer -d hci0

// Set the filter for the correct type of packets

csr_sniffer -d hci0 -f 7

// Set the Devices that are to be sniffed

csr_sniffer -d hci0 -S 00:23:D4:23:3B:F6@A0:07:87:A9:E4:A4

// Begin sniffing, ignore zero packets and search for PIN data.

15

Figure 3.2: Using BTCrack to Bruteforce the PIN

csr_sniffer -e -z -p

All packets are now logged and Csr sniffer will search for the particular series

of packets containing the pairing procedure and extract the relevant data

and output in a single line in the BTcrack format. BTcrack is an application

developed by Shaked and Wool and improved by Thierry Zoller[10] that

bruteforces the PIN/link key when supplied with the pairing data. BTcrack

is then executed (see figure 3.2) on this data to bruteforce the PIN.

Once the encrypt key is discovered, all communication between the two

devices can be logged. Masquerading as either device can now be accom-

plished using MAC address spoofing.

16

Chapter 4

Finding the MAC Address

Utilising the work of Spill and Bittau’s “BlueSniff: Eve meets Alice and

Bluetooth”[3], I show it is possible to sniff the connection between two de-

vices when the MAC addresses are not known and they are not publicly

broadcasting their Bluetooth status (i.e. not in discoverable mode).

Figure 4.1: The form of a MAC address - Copyright Spill & Bittau

4.1 Data Whitening

As outlined in the ‘whitening’ section there are only 64 values which the

scrambling can be based on. Spill’s work illustrates a method to unwhiten

the data with a simple function:

17

void unwhiten(input, output, clock) {

indices[64] = array of indices into whitening_data;

whitening[127] = array of outputs from whitening lfsr;

index = indices[clock];

for(bits in data) {

output = input XOR whitening[index];

index++;

index = index MOD 127;

}

}

Code Copyright Spill and Bittau

This can be performed on any packet with a payload CRC. False positives

are extremely unlikely (1 in 65536). Therefore for any packet, unwhiten is

called and checked against the CRC. If it matches, the message is unscram-

bled and determining the MAC address can now begin.

The MAC address consists of three parts (as indicated in Fig. 4.1) and

the entire MAC address is eight bytes: 2 bytes NAP, 1 byte UAP and 3 Bytes

LAP.

4.1.1 LAP

The start of every packet is prefixed by an access code of 72 bits. The

lower address part is found in the middle of every access code. Hence once

unwhitened, the access code can be read directly from the packet and verified

by the checksum.

18

4.1.2 UAP

The UAP generates the error check field (the HEC - header error code) in

each packet’s header. This HEC is calculated over the 10 bits of data in the

header. The UAP from the master device initialises a register of 8 bits. Each

bit of the header is fed into the register in the order of transmission, and this

final calculation is appended to the end of the header.

The process to convert the UAP to HEC is a XOR operation and hence

can be reversed.

UAPtoHEC(header, HEC) {

for(bits in header) {

HEC = HEC_bit_0 XOR HEC_bit_1;

HEC = HEC_bit_0 XOR HEC_bit_2;

HEC = HEC_bit_0 XOR HEC_bit_5;

HEC = HEC_bit_0 XOR HEC_bit_7;

right_shift(HEC);

HEC = HEC_bit_0 XOR header_bit;

}

return HEC;

}

4.1.3 NAP

The NAP is only two bytes long and the first byte is generally zero. The

256 values can be brute forced by sending a Bluetooth connection to all

possible addresses. However this can be simplified by noting that the NAP

and UAP are based upon the vendor of the device and can be estimated by

the potential sniffer.

19

4.1.4 Final Algorithm

1. Determine LAP from access code.

2. Generate 64 candidates by using the unwhitening algorithm for all pos-

sible 64 inputs.

3. Generate the 64 candidates for the UAP from the HEC from each

packet.

4. For each of these pairs, calculate and compare the CRCs and find which

candidate is correct.

5. Bruteforce the remaining NAP after first eliminating candidates with

the vendor ID lookup.

20

Chapter 5

Reverse Engineering the PS3

Controller Protocol

5.1 Sniffing the PS3 Connection

The first major problem regarding the PS3 is that the pairing between the

controller and the host PS3 is carried out through a direct USB connec-

tion. As the master MAC addresses are exchanged here and written to the

controller which is registered to the PS3, this provides some security by ob-

fuscation. I attempted to investigate whether it was possible, and perhaps

easier, to sniff the USB connection (rather than the Bluetooth) connection

to determine the MAC addresses.

5.1.1 USB Sniffing

USB sniffing is remarkably simple compared to Bluetooth sniffing because it

is done by open source software rather than hardware. USB sniffers work

by creating an intermediary service between the device and the operating

system, silently observing all control and interrupting and bulking USB re-

21

quests. The program used was USB Snoop. While this revealed some of the

control points (see (Figure 5.1) it did not reveal the correct control points

for the Bluetooth master address.

5.1.2 PS3 USB Connection

These USB control requests show that there exists two separate interrupt

pipes to interact with the device - 0x02 and 0x81. However, the control re-

quests must be determined to command the controller to parse data to these

interrupt pipes. As the controller connects to the PC as a Human Interface

Device (HID) it must respond to HID commands. With this knowledge I re-

searched the Bluetooth USB control requests and found the work of Pascal[11]

and his sixpair program. This contained two routines - one which extracted

the current Bluetooth master address (using HID GET REPORT as the bm-

Request) and one to write a new address to the controller’s memory (using

HID SET REPORT).

char bdaddr[8]= { 0x01, 0x00, bdaddr[0],bdaddr[1],

bdaddr[2],bdaddr[3],bdaddr[4],bdaddr[5] };

int res = usb_control_msg (devh, USB_DIR_OUT | USB_TYPE_CLASS |

USB_RECIP_INTERFACE, HID_SET_REPORT, 0x0300 | PS3_F5_REPORT_ID,

itfnum, msg, sizeof(msg),5000);

The important thing to note here:

USB_DIR_IN | USB_RECIP_INTERFACE = 0x81

The last address that must be retrieved is the controller’s address. This is

discovered by changing the master address that the controller attempts to

communicate with to the address of our Bluetooth dongle. Hcidump will log

22

Figure 5.1: The endpoints of the PS3 Controller

23

Figure 5.2: Using Bdaddr to forge the address

all incoming connection requests, which will include the unique MAC address

of the controller.

5.1.3 PS3 Bluetooth Sniffing

The first attempt to connect to the PS3 directly from the PC resulted in

failure. The PS3 restricts access to paired devices and also to a specific class

of devices, the class 0x508 (game controller). Therefore using the Bdaddr

program (see Figure 5.2) the MAC address of the dongle is changed to the

controller’s MAC address:

This attempt results in moderate success - the PlayStation accepts the

connection request but quickly shuts down all communication as soon as the

correct setup packets are not communicated.

Directly sniffing the communication between the two devices was also

unsuccessful as the devices are already paired via USB and do not respond

to Bluetooth Page requests for a new pairing. Without discovering the link-

key following the Bluetooth communication was impossible. The only option

to discover this would be to USB sniff the actual pairing process.

24

Figure 5.3: Illustrating the Proxy Setup

5.1.4 PS3 Proxy

The solution to these problems came when I discovered sixproxy - a pro-

gram based upon sixpair written by Mikael Bouillot[12]. The concept of

this program is to get the PS3 to act as a proxy between the PS3 and the

controller. Originally designed to remove the deadzone in the PlayStation

3 accelerometer I saw that it would be able to resolve the communication

rejection problem. This works by finding the MAC address of controller 2,

and MAC address spoofing the PC’s Bluetooth address to controller 2. Af-

twerwards PS3 address in controller 1 is set to that of controller 2. Hence the

controller thinks it’s connecting to the PS3, and the PS3 thinks its connecting

to controller 2, when in fact they are both connecting to the PC.

I decided to implement this idea myself but as a man-in-middle attack -

transparently recording the packets between the controller and the PS3. This

proved highly successful. The PlayStation 3 believed it was communicating

with the controller directly and hence eliminated the disconnect issues. As

a result it was possible to capture all the packets when specific buttons were

pressed down. Unfortunately, at first it appeared that the packets were

25

encrypted / obfuscated as there appeared no relationship between button

press and packet data. Thankfully with deeper analysis, patterns began to

emerge between button press and byte data.

26

Chapter 6

Results

6.1 Deconstructing the Packet Data

The process of retrieving meaningful data from the sniffed data was difficult.

With no references or information available on the PS3 controller specifi-

cation it was a process involving creating all possible button scenarios and

finding patterns in the resulting data.

27

Table 6.1: Digital Buttons

Byte Number Button(s) Controlled Notes

Mutiple buttons

Select - 1 = 20

Start - 2 = 23 Hence holding down

Byte[7] Up - 16 = 24 left and up

Right - 32 = 25 becomes 10010000.

Down - 64 = 26

Left - 128 = 27

Mutiple buttons

L2 - 1 = 20

R2 - 2 = 21

L1 - 4 = 22

Byte[8] R1 - 8 = 23

Triangle - 16 = 24

Circle - 32 = 25

Cross - 64 = 26

Square - 128 = 27

Byte[9] PS Button - 1 = 20

28

Table 6.2: Analog Sticks

Byte Number Button(s) Controlled Notes

0 = Stick Held Left

Byte[10] Horizonal Left Analog Stick 128 = Stick in Centre

255 = Stick Held Right

0 = Stick Held Up

Byte[11] Vertical Left Analog Stick 128 = Stick in Centre

255 = Stick Held Down

Table 6.3: Pressure Sensors

Byte Number Button(s) Controlled Notes

Byte[19] Up

Byte[20] Right

Byte[21] Down

Byte[22] Left

Byte[23] L2

Byte[24] R2

Byte[25] L1

Byte[26] R1

Byte[27] Triangle

Byte[28] Circle

Byte[29] Cross

Byte[30] Circle

Bytes 19-30 contain the pressure sensor reading, which indicates the amount

of pressure downwards on the controller by the user on a particular button.

29

Table 6.4: Accelerometer

Byte Number Button(s) Controlled Notes

Byte[46] + Byte[47] Pitch A two byte value (0-65535)

Accelerometer holding the controllers

current horizontal inclination.

Byte[48] + Byte[49] Roll A two byte value (0-65535)

Accelerometer holding the controllers

current vertical inclination.

Byte[49] + Byte[50] Yaw A two byte value (0-65535)

Accelerometer holding the controllers

current vertical inclination.

30

Chapter 7

Discussion

While it was possible to intercept and reverse engineer some of the data of

the packets, there still exists many limitations before a software emulated

controller can be developed.

The main issues to overcome is the pairing with the PS3 and then the

forging the initial connection parameters once a link is established. When a

controller is initially connected to the PS3 and the PS button is pressed, the

controller learns the Bluetooth MAC address of the PS3. Concurrently the

PS3 learns the controllers address and adds this information to its allowed

devices. This pairing process would have to be USB sniffed in some form,

or through trial and error to find the correct parameters to pass to the PS3.

However while this is an inconvenience from a user perspective, it can be

mitigated during development with address spoofing.

The initial communication parameters passed in the Bluetooth connection

however are crucial to the communication. In the first 30 packets (15 in

each direction), information on clock, power status, encryption and status

are exchanged. Although the PS3 will accept the a Bluetooth connection

request from its list of known controller MAC address, it stops responding

31

without the correct information.

Once these problems are rectified, it is entirely plausible to create a soft-

ware controller. The button presses and other data are easily duplicated by

writing to byte arrays, and this could be mapped to the keyboard.

Another option of potential research is using the fact that the PlayStation

3 controller is a HID device. Any other comparable HID device (i.e. a

keyboard) should be able to be masqueraded as the controller. I believe this

would be substantial effort to do correctly.

Throughout this project the use of the Bluetooth sniffer was key to under-

standing and analysing these packets. This was not without its own caveats

- the sniffer was incredibly unreliable. It would reset, lock itself or other-

wise become unresponsive, programs would have trouble interfacing with it,

and it would ignore communications haphazardly. MAC address spoofing

would also cause unreliability when in use and also randomly revert to its

old address halfway through communication.

This research of sniffing the communications between the mobile phones

and sniffing the pin relies on the devices using ≤ 2.0 Bluetooth. Bluetooth

2.1 introduces a new pairing mechanism labeled Secure Simple Pairing (SSP)

and also requires encryption for all non-SDP (Service Discovery Protocol)

connections. Instead of a simple PIN, SSP uses a form of public key cryptog-

raphy to perform the pairing procedure. This is more difficult to determine

the link-key but according to research should be possible. [13]

32

Chapter 8

Conclusion

I have shown through an analysis of open source tools that the Bluetooth

communication can be easily sniffed with cheap consumer grade products,

even when set in undiscoverable mode in an ideal situation. However applying

these techniques in a real-world environment would be substantially more

difficult as forcing the re-pair process is unreliable at best.

Using these techniques, I apply these penetrations tests to the Sony

PlayStation 3 controllers. Unfortunately due to a combination of issues such

as hardware failure and a different communication model for the HID con-

troller device, I was unsuccessful in the raw sniffing of the MAC address.

I overcame these problems by utilising USB sniffing (finding the controller

control commands) and then following with MAC address spoofing and a

Bluetooth input proxy to sniff the communication packets.

Logging all packets through the PC I was able to discern the controller

specification and provide mappings between the byte arrays and button

presses. The initial packets (containing the setup and authentication data)

were unable to be reverse-engineered, however with further research a soft-

ware emulated controller is a definite possibility.

33

Bibliography

[1] TamoSoft. Promiscuous Monitoring in Ethernet and

Wi-Fi Networks, 2005. http://www.ferret.com.au/n/

Secure-wireless-networks-for-industrial-applications-n690552.

[2] Konstantin Sapronov. Bluetooth, bluetooth security and new year

war-nibbling, May 2007. http://packetstormsecurity.org/papers/

wireless/busting_bluetooth_myth.pdf.

[3] Dominic Spill and Andrea Bittau. Bluesniff: Eve meets alice and blue-

tooth. In WOOT ’07: Proceedings of the first USENIX workshop on

Offensive Technologies, pages 1–10, Berkeley, CA, USA, 2007. USENIX

Association.

[4] Wikipedia. Bluetooth — wikipedia, the free encyclopedia, 2010. http:

//en.wikipedia.org/w/index.php?title=Bluetooth.

[5] Bruno Forgue. Secure wireless networks for industrial ap-

plications, May 2004. http://www.ferret.com.au/n/

Secure-wireless-networks-for-industrial-applications-n690552.

[6] David Blankenbeckler. An introduction to bluetooth, 2010.

http://www.wirelessdevnet.com/channels/bluetooth/features/

bluetooth.html.

34

[7] Christian Gehrmann. Bluetooth security white paper, 2002.

http://www.bluetooth.com/Research%20and%20White%20Papers/

security_whitepaper_v1.pdf.

[8] Max Moser. Busting the bluetooth myth - getting

raw access, May 2006. http://www.ferret.com.au/n/

Secure-wireless-networks-for-industrial-applications-n690552.

[9] Frontline. Fts4bt bluetooth protocol analyzer and packet sniffer, 2010.

http://www.fte.com/products/fts4bt.aspx.

[10] Yaniv Shaked and Avishai Wool. Cracking the bluetooth pin. In MobiSys

’05: Proceedings of the 3rd international conference on Mobile systems,

applications, and services, pages 39–50, New York, NY, USA, 2005.

ACM.

[11] Pascal. Using the playstation 3 controller in bluetooth mode with linux,

2010. http://www.pabr.org/sixlinux/sixlinux.en.html.

[12] Mikael Bouillot. Ps3 bluetooth input proxy, August 2009. http://www.

corbac.com/page43.html.

[13] Andrew Y. Lindell. Attacks on the pairing protocol of bluetooth v2.1,

2008.

35

